
Formal Verification of Semi-algebraic Sets and Real
Analytic Functions

J. Tanner Slagel
NASA Langley Research Center

Hampton, Virginia, USA
j.tanner.slagel@nasa.gov

Lauren White
Kansas State University
Manhattan, Kansas, USA
laurenmwhite@ksu.edu

Aaron Dutle
NASA Langley Research Center

Hampton, Virginia, USA
aaron.m.dutle@nasa.gov

Abstract
Semi-algebraic sets and real analytic functions are fundamen-
tal concepts in Real Algebraic Geometry and Real Analysis,
respectively. These concepts appear in the study of Differ-
ential Equations, where the real analytic solution to a differ-
ential equation is known to enter or exit a semi-algebraic
set in a predictable way. Motivated to enhance the capabil-
ity to reason about differential equations in the Prototype
Verification System (PVS), a formalization of multivariate
polynomials, semi-algebraic sets, and real analytic functions
is developed. The way that a real analytic function behaves
in a neighborhood around a point where the function meets
the boundary of a semi-algebraic set is described and veri-
fied. It is further shown that if the function is assumed to be
smooth, a slightly weaker assumption than real analytic, the
behavior around the boundary of a semi-algebraic set can
be very different.

CCS Concepts: • Theory of computation → Logic and
verification; • Mathematics of computing → Continu-
ous functions.

Keywords: formal verification, PVS, semi-algebraic sets, real
analytic functions
ACM Reference Format:
J. Tanner Slagel, Lauren White, and Aaron Dutle. 2021. Formal
Verification of Semi-algebraic Sets and Real Analytic Functions. In
Proceedings of the 10th ACM SIGPLAN International Conference on
Certified Programs and Proofs (CPP ’21), January 18–19, 2021, Virtual,
Denmark. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3437992.3439933

1 Introduction
Differential equations are a powerful tool for modeling the
evolution of continuous states in dynamical systems [15, 34].
While a variable is modeled as a solution to a differential
Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
CPP ’21, January 18–19, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8299-1/21/01. . . $15.00
https://doi.org/10.1145/3437992.3439933

equation, semi-algebraic (SA) sets can be used to define envi-
ronment constraints and control properties of the variable. In
the context of safety-critical applications, the way a solution
to a differential equation acts on and around the boundary of
a semi-algebraic set is crucial for verifying the safety prop-
erties of the given system. In particular, the solution of a
differential equation being inside or outside an SA set at a cer-
tain time can inform whether a safety violation has occurred
or not. One specific example is two aircraft maintaining a
safe distance from one another [11]. Another example is the
way an aircraft might safely navigate in an airspace that
contains a geofence; see Figure 1.
Differential dynamic logic (DDL) is a logic that allows

formal reasoning about hybrid systems, using properties of
solutions of differential equations, in some cases without
having the explicit solution [26, 27]. Under modest assump-
tions, the solution of a differential equation is guaranteed
to be a real analytic function (see, e.g. [9], Chapter 1.D, or
[36], Chapter 9.37), therefore reasoning about a differential
equation subject to a set of constraints can often be reduced
to reasoning about a real analytic function and an SA set
[18, 32].
This work focuses on the formal specification and verifi-

cation of SA sets and real analytic functions in the Prototype
Verification System (PVS) [24, 25]. The main motivation is
the eventual implementation of a formally verified version of
DDL in PVS that allows users to reason about cyber-physical
systems using DDL interactively in PVS. To do this, the de-
duction rules for DDL must be formally verified in PVS, and
as noted above, these involve reasoning about real analytic
functions and SA sets. SA sets are defined using collections
of multivariate polynomial constraints, allowing a wide va-
riety of sets to be defined. The formalization provided in
this paper allows for reasoning about general SA sets and
particular user-specified instantiations of these sets.

A formal specification of the theory of real analytic func-
tions is also developed. Real analytic functions can be written
in terms of their power series, which includes functions like
polynomials, trigonometric functions, exponential and loga-
rithmic functions, and products, sums, and compositions of
such functions. Notably, even functions that are not explicitly
specified may be known to be real analytic, the motivating
example being solutions to many differential equations.

https://doi.org/10.1145/3437992.3439933
https://doi.org/10.1145/3437992.3439933
https://doi.org/10.1145/3437992.3439933

CPP ’21, January 18–19, 2021, Virtual, Denmark J. Tanner Slagel, Lauren White, and Aaron Dutle

y0

y′ = f(y)

Rn

Figure 1. A real analytic solution to a differential equation moves in and out of a semi-algebraic set. This can be seen as a
aircraft, whose path is defined as the solution to a differential equation, moving in and out of a geofence defined by an SA set.

The way that a real analytic function behaves around
the boundary of an SA is known to have specific geometric
properties, which are essential for reasoning in DDL. In
particular, the differential variant techniques in DDL [32, 35]
rely on the fact that when a real analytic function is on
the boundary on an SA set at a specific point, there is a
nontrivial amount of time afterward where the function
remains wholly inside or outside the SA set. This property
is shown in Figure 1, where the real analytic solution of a
differential equation leaves an SA set for a complete interval
of time before entering again. In terms of an aircraft flying
through a geofence, this property shows that the aircraft
does not move inside and outside the geofence infinitely
many times in a finite time-frame. This is a property that
many would accept intuitively about aircraft and geofences,
and in part validates using a model of real analytic functions
and SA sets to describe such systems.

The properties described above, and similar properties, are
formally verified in PVS. It is also shown that these properties
are not guaranteed when relaxing the assumption of real
analytic to smooth (i.e., infinitely differentiable). This offers
practical insight regarding the subtle difference between real
analytic and smooth functions. Furthermore, the challenges
of implementing this theory in PVS give educational insight
into proofs and allows further development of the growing
NASA PVS library.1

The remaining sections are organized as follows. Section 2
gives a brief review of multivariate polynomials and SA sets.
Section 3 introduces real analytic functions and describes
the way they behave on and around SA sets. Related work
is discussed in Section 4. Conclusions and future directions
are discussed in Section 5.
The mathematics presented in Sections 2 and 3 have all

been specified and verified in PVS by the authors, except that
in a few cases, some important concept or theorem is taken

1https://github.com/nasa/pvslib

from NASA’s PVS library (NASALib). This will be explicitly
noted when needed.

2 Polynomials & Semi-algebraic Sets
Real Algebraic Geometry is a branch of mathematics con-
cerned with the study of SA sets. An SA set is a set of points
that satisfy a finite sequence of multivariate polynomial
equalities and inequalities, or a union of such sets [2]. As
noted in the introduction, SA sets are also important to the
theory of general real-valued functions, particularly how a
real analytic function behaves on such a set. This section
discusses a formalization of multivariate polynomials and
SA sets in PVS.

2.1 Multivariate Polynomials Over the Reals
When mathematicians consider multivariate polynomials
over the reals, it is often unclear what kind of formal objects
they are referring to. Such a polynomial may be considered as
amember of the polynomial ringR[X0,X1, . . . ,Xm−1]withm
indeterminants and real coefficients, as a member of the ring
(R[X0,X1, . . . ,Xm−2])[Xm−1]) with a single indeterminant
and polynomial coefficients, as a function from Rm into R,
or as one of many other possible definitions. Indeed, the fact
that polynomials can be considered in different settings is
part of what makes them so useful.
From the formalization standpoint, one particular repre-

sentation for such polynomials has to be chosen, and trans-
lations or interpretations for any of the other definitions
have to be specified and justified. The author Zippel, in [37],
identifies three decision points with respect to choosing
how polynomials can be represented. Expanded vs. recur-
sive representation concerns whether coefficients are real
numbers and multiple variables are allowed (expanded), or
a single variable has (recursively) multivariate polynomials
as coefficients. Variable sparse vs. variable dense refers to
whether the representation includes variables with exponent

https://github.com/nasa/pvslib

Formal Verification of Semi-algebraic Sets and Real Analytic Functions CPP ’21, January 18–19, 2021, Virtual, Denmark

zero (dense) or excludes them (sparse) in a monomial defi-
nition. Degree sparse vs. degree dense refers to whether all
monomials up to a given multidegree are included in the
representation by using a zero coefficient (dense) or if only
those with non-zero coefficient are recorded (sparse). For
this formalization, an expanded, (essentially) variable dense,
and (essentially) degree sparse representation was chosen,
as described below.
The polynomials considered here are real-linear combi-

nations of primitive monomials, expressions of the form
Xα := X α0

0 · · ·X αm−1
m−1 , where α = (α0,α1, . . . αm−1) ∈ Nm ,

andm ∈ N. The number of entries in α is called the dimen-
sion of the primitive monomial, i.e., dim (Xα) =m, while the
degree of the of primitive monomial is deg (Xα) =

∑m−1
i=0 αi .

A monomial is then cXα , where c ∈ R. The implementation
of this is done with record datatype
monomial: TYPE =

[# C : = real, alpha : = list[nat] #],

with a particular instantiation of this type taking the form
m = (# C : = c, alpha : = L #).

The symbol “ ’ ” is field accessor of a record, i.e., m’alpha
= L . This is equivalent to the dot notation in programming
languages like Java. Note that the implementation above
allows for coefficients to be zero, hence not forcing degree
sparsity. A multivariate polynomial function has the form

p =
n∑

k=0
ckXα (k), (1)

where n ∈ N is finite, ck ∈ R, and α (k) ∈ Nm for each
k ∈ N≤n . The implementation represents this simply as a
list,
MultPoly: TYPE = list[monomial].

This intentionally allows for different expressions to be given
for the same polynomial. For example, consider the (syntac-
tically distinct) expressions

p1 =X
2
0 + X0,

p2 =X0 + X
2
0 ,

p3 =X0X
0
1 + X

2
0 ,

p4 =X0 + 3X 2
0 + (−2)X

2
0 , and

p5 =X0 + X
2
0 + 0X

3
0 ,

(2)

represented in PVS as
p1: MultPoly = (: (# C: = 1, alpha: = (: 2 :) #),
(# C: = 1, alpha: = (: 1 :) #) :)

p2: MultPoly = (: (# C: = 1, alpha: = (: 1 :) #),
(# C: = 1, alpha: = (: 2 :) #) :)

p3: MultPoly = (: (# C: = 1, alpha: = (: 1, 0 :) #),
(# C: = 1, alpha: = (: 2 :) #) :)

p4: MultPoly = (: (# C: = 1, alpha: = (: 1 :) #),
(# C: = 3, alpha: = (: 2 :) #),

(# C: = -2, alpha: = (: 2 :) #) :)

p5: MultPoly = (: (# C: = 1, alpha: = (: 1 :) #),
(# C: = 1, alpha: = (: 2 :) #),
(# C: = 0, alpha: = (: 3 :) #) :).

These expressions are different, and yet are meant to ex-
press the same polynomial. Indeed, considered as functions,
these are the same, and simple algebraic manipulation can
turn any one into the other. This general form of polyno-
mials allows for the easy definition of ring operations on
polynomials (addition is just list concatenation), but in or-
der to unambiguously define the dimension and degree of a
polynomial, a standard form is defined.

Definition 2.1. A multivariate polynomial representation
given by Equation (1) is said to be in standard form when the
following properties hold:

1. The dimension of each monomial in the expression is
the same, and some term uses the last variable non-
trivially. That is, there existsm ∈ N such that
dim (α (k)) = m for all k ∈ N≤n , and there exists
n0 ∈ N≤n with αm (n0) > 0.

2. For i , j ∈ N≤n , α (i) , α (j). In other words, each
exponent vector α can appear at most one time in (1).

3. The coefficient ck , 0 for each k ∈ N≤n (note that the
identically zero polynomial is the empty list).

4. The monomial terms in the expression (1) are ordered
by some total order on the monomials inm variables.

In the PVS formalization, each of these properties is de-
fined using a predicate on a polynomial p. In addition, func-
tions are defined that operate on a general polynomial and
give it the corresponding property. Property 1 is defined
using the predicate minlength?(p), and bestowed by ap-
plying cut(p), which removes trailing zeroes from expo-
nents, and lift(p), which pads each exponent with ze-
roes to make the length equal to the longest exponent in
the polynomial. Property 2 is defined using the predicate
simplified?(p), and bestowed by simplify(p). Property
3 is defined using the predicate allnonzero?(p), and be-
stowed by allnonzero(p). Property 4, with respect to the
graded lexographical (GL) ordering described below, is de-
fined using the predicate is_sorted?(p), and bestowed by
mv_sort(p). Using these functions, Definition 2.1 is speci-
fied as a single predicate mv_standard_form?(p) that holds
when all 4 predicates hold, and the corresponding function
mv_standard_form(p) gives all four properties to the poly-
nomial p.

The particularmonomial ordering chosen for sortingmono-
mials is the graded lexographical ordering. The ordering sorts
first by the total degree of the monomial (graded), and breaks
ties comparing the degrees of individual variables in order
(lexicographic). Specifically, Xα (0) < Xα (1) exactly when:

1. deg
(
Xα (0)) < deg

(
Xα (1)) , or

CPP ’21, January 18–19, 2021, Virtual, Denmark J. Tanner Slagel, Lauren White, and Aaron Dutle

2. deg
(
Xα (0)) = deg

(
Xα (1)) and

∃j ∈ N≤m−1
(
α j (0) < α j (1) ∧ ∀i ∈ N<j αi (0) = αi (1)

)
.

As an example, the fourmonomials in the ringR[X0,X1,X2]

below are listed in increasing GL order.

X1X2, X
2
0X

2
1 , X

2
0X

1
1X

1
0 , X

4
0 .

Given a polynomial whose representation is in standard
form, the degree and dimension are each well-defined. The
dimension is the length of the longest exponent (or in fact
any exponent due to the lift function), and the degree is the
maximum degree (or the degree of the last monomial, due
to mv_sort). Functions for polynomial addition, scalar and
polynomial multiplication, and polynomial exponentiation
are specified, which, by definition, preserve standard form.

Multivariate polynomials so far defined have the structure
of a ring, and hence can be combined and manipulated, but
cannot yet be used as functions from Rm → R. To do so, an
evaluation function on polynomials is defined. Evaluation
takes a list of values, at least as long as the dimension of
the polynomial, and replaces the variables with the corre-
sponding values, ignoring values past the dimension of the
polynomial, returning a real number.
The main purpose of the evaluation function is for use

in defining the SA sets of Section 2.2. A secondary use of
the evaluation function is in proving the uniqueness of the
standard form defined above.

Theorem 2.2. Given a function σ that returns the standard
form of a polynomial as in Definition 2.1, andp1,p2 polynomial
expressions of the form (1),

σ (p1) = σ (p2)

if and only if for all x ∈ Rm ,

p1(x) = p2(x).

2.2 Semi-algebraic Sets
Given a dimensionm, an SA set is a subset S ⊆ Rm defined
by satisfying a finite collection of multivariate polynomial re-
lations, or a finite union of such sets. This corresponds to sat-
isfying the disjunction (or join) of the conjunction (or meet)
of a collection of polynomial relations. A boolean formula in
this form is said to be in disjunctive normal form. In some sit-
uations, it is more convenient to consider the general form of
a quantifier-free boolean formula over multivariate polyno-
mial relations built using the boolean operators ∨,∧,¬, and
⇒ . Noting that every such quantifier-free boolean formula
can be written in disjunctive normal form [5], the restricted
definition as the join of meets is chosen without loss of gen-
erality. The technical definition and formalization details are
developed below.
An atomic polynomial formula over the variables X :=

X0, · · · ,Xm−1 is defined as p ▷ 0 where p is a polynomial in

R[X] and ▷ ∈ {≥, >, ≤, <}.2 The implementation of this in
PVS is done with a record datatype
atomic_poly: TYPE =
[# poly:(mv_standard_form?), ineq:INEQ #],

where
INEQ: TYPE = { ff: [real,real -> bool] |
(ff = <=) OR (ff = >=) OR
(ff = <) OR (ff = >) }.

Note, in the type INEQ above the expression = is a higher
order equality used to compare functions, where the inequal-
ities <=, >=, < , and > are functions that return the truth
value of the inequality based on the two real operands.

The formulas to be considered are expressed as

φ =
I∨
i=1

Ji∧
j=1

pi j ▷ 0, where ▷ ∈ {≥, >, ≤, <}, (3)

and a subset S of Rm is a semi-algebraic set, if there is a
quantifier free polynomial formula φ such that

S = {x ∈ Rm | φ(x) is true}.

In the formalization, the conjunction of atomic polynomial
formulas is specified simply as a list,
meeting TYPE = list[atomic_poly],

and a disjunction of these conjunctions is specified as
joining: TYPE = list[meeting].

Of course, the atomic polynomials and lists of them have
no inherent meaning, being just lists. To define an SA set,
evaluation functions must be defined. The functions
atom_eval, meet, and join are defined successively to take
a point x ∈ Rm and return the truth value of an atomic
polynomial formula, the meet of such formulas, and the join
of meets evaluated at the point.

An SA set S(φ) defined by φ is then specified in PVS by
semi_alg(j:joining)(n:nat | n >= meet_max(j)):

set[VectorN(n)] =
{ x:VectorN(n) | join(j)(x) },

where VectorN(n) is the type of lists of real numbers of
length n. One of the most important basic properties of semi-
algebraic sets is that they are closed under finite set opera-
tions. The following theorem expresses this.

Theorem 2.3. For two SA sets S1 and S2, the following prop-
erties hold:

1. The union S1 ∪ S2 is an SA set.
2. The intersection S1 ∩ S2 is an SA set.
3. The compliment Sc1 is an SA set.

This theorem is clear intuitively (union is join, intersection
is meet, and complement is negation), but due to the formal-
ization definition, the formal proof requires translating the
2The functions = and , are excluded for simplicity of the embedding of SA
sets. Note that they can be described with the relations allowed.

Formal Verification of Semi-algebraic Sets and Real Analytic Functions CPP ’21, January 18–19, 2021, Virtual, Denmark

conjunction and disjunction of two joining expressions in
disjunctive normal form into another expression that is in
disjunctive normal form. For union, the formula for the dis-
junction of two joining expressions in disjunctive normal
form is as simple as concatenating the two lists using the
append function:

union_join: LEMMA
FORALL(j1,j2:joining,
x: list[real] | length(x) >=
max(meet_max(j1),meet_max(j2))):
(join(j1)(x) OR join(j2)(x)) =
join(append(j1,j2))(x).

For intersection, the formula for the conjunction of two
joining expressions in disjunctive normal form (3) is given
by

cap_join(j1,j2:joining): RECURSIVE joining =
IF j1 = null THEN null
ELSIF j2 = null THEN null
ELSE append(append_to_each(car(j1),j2),
cap_join(cdr(j1),j2))
ENDIF
MEASURE length(j1).

Here, the append_to_each function takes each conjunc-
tion in the second joining and appends it to each of the
conjunctions in the first joining. This is because distribut-
ing a conjunction over disjunctions has the following form(

I∨
i=1

Ji∧
j=1

pi j ▷ 0

)
∧ (q ▷ 0) =

I∨
i=1

Ji+1∧
j=1

wi j ,

where

wi, j =

{
pi, j j ≤ Ji

q j = Ji + 1.

Using the cap_join function, it can be shown that the con-
junction of two disjunctive normal form expressions can be
written in disjunctive normal form.

intersect_join: LEMMA
FORALL(j1,j2:joining,
x:list[real] | length(x) >=
max(meet_max(j1),meet_max(j2))):
(join(j1)(x) AND join(j2)(x)) =
join(cap_join(j1,j2))(x).

Noting that the complement of an SA set is given by the
negation of the corresponding formula, i.e. S(φ)c = S(¬φ),
consider the negation of (3) which can be written

¬φ =
I∧
i=1

Ji∨
j=1

pi j¬ ▷ 0 where ¬▷ ∈ {≥, >, ≤, <}. (4)

Here ¬▷ is defined according to the following table:

▷ ¬▷

≥ <
≤ >
> ≤

< ≥

The expression in equation (4) is transformed into disjunctive
normal form by repeated use of the cap_join function:
not_join(j:joining): RECURSIVE joining =
IF j = null THEN(: (: :) :)
ELSE
cap_join(negative_atom_meet(car(j)),
not_join(cdr(j)))
ENDIF
MEASURE length(j).

The equivalence is expressed by
not_join: LEMMA

FORALL(j:joining, x:list[real] |
length(x) >= meet_max(j)):
(NOT join(j)(x)) = join(not_join(j))(x).

As noted above, the proofs here could have been made
simpler by allowing for more general boolean expressions
in the definition of SA sets. On the other hand, this would
have incurred an overhead cost in the original specification,
as well as in the evaluation functions. The design choice of
using only formulas in disjunctive normal form allows for
a much cleaner representation, at the cost of some tedious
proofs.

3 Real Analytic Functions
For an open set D ⊆ R, A real function f : D → R is said
to be real analytic at a point c0 ∈ D when there exists a real
sequence {ak }∞k=0 and an r ∈ R>0 such that

f (x) =
∞∑
k=0

ak (x − c0)
k ∀x ∈ (c0 − r , c0 + r) . (5)

Furthermore, f is real analytic on aV ⊆ D if it is real analytic
at each x ∈ V . In PVS, the sequence {ak } and real number r
in (5) are defined by the predicate
analytic_parts?(c0:real,f:[real->real])
(M:posreal, ak:sequence[real]): bool =

FORALL(x:real| abs(x-c0) < M):
convergent?(powerseries(ak)(x-c0)) AND
f(x) = inf_sum(powerseq(ak,x-c0)),

Using this predicate, an real analytic function f : R→ R at
a point c0 is defined by
analytic?(c0:real)(f:[real -> real]): bool =
EXISTS(r:posreal, ak:sequence[real]):
analytic_parts?(c0,f)(r,ak).

For a function f : D → R, where D is open, the definition
in (5) is equivalent to
analytic?(c0:real)(lift(D,f))

CPP ’21, January 18–19, 2021, Virtual, Denmark J. Tanner Slagel, Lauren White, and Aaron Dutle

where lift(D, f) trivially extends the domain of f to all of
R, i.e.,
lift(D:(open?),f:[D -> real])(x:real): real =
IF D(x) THEN f(x) ELSE 0 ENDIF.

In (5), the number r is called the the radius of convergence
of f at c0. If there is not a r such that (5) holds, the maximal
radius of convergence is said to be 0, while if (5) holds for
all r ∈ R≥0, the maximal radius of convergence is said to be
infinity. In all other cases there is an rmax ∈ Rwhich is called
the maximal radius of convergence.
From the definition in (5), it is clear that the infinite sum∑∞
k=0 ak (x − c0)

k , x ∈ (c0 − r , c0 + r) converges. Using stan-
dard properties of convergent series, it can be shown that
real analyticity is closed under addition and scalar multiplica-
tion. To show that the product of two real analytic functions
is real analytic, the following lemma is required.

Lemma 3.1 (Absolute Convergence). Suppose f : D → R
is real analytic at a point c0 ∈ D, as stated in (5). For each
x ∈ (c0 − r , c0 + r), the sum

A =
∞∑
k=0

���ak (x − c0)
k
���

converges.

Lemma 3.1 shows that if a function is real analytic, then the
series representation of the function converges absolutely.
This lemma has been previously proven in NASALib’s series
library, so the proof will not be presented here.
With the lemma above, enough machinery is available

to show that being real analytic at a point is closed under
summation, scalar multiplication, and multiplication.

Theorem 3.2. Suppose f : D → R and д : D → R are real
analytic at a point c0 ∈ D with radius of convergence rf and
rд respectively. i.e.,

f (x) =
∞∑
k=0

ak (x − c0)
k ∀x ∈

(
c0 − rf , c0 + rf

)
(6)

д(x) =
∞∑
k=0

bk (x − c0)
k ∀x ∈

(
c0 − rд , c0 + rд

)
and let rmin = min

(
rf , rд

)
, then the following statements hold:

1. f + д is real analytic with radius of convergence rmin,
2. c · f is real analytic with radius of convergence rf , and
3. f · д is real analytic with radius of convergence rmin

(f · д) (x) =
∞∑
k=0

conv (k,a,b) (x − c0)
k ,

where conv(k,a,b) is thekth convolution of the sequences
a and b

conv (k,a,b) =
k∑
i=0

aibk−1.

Proof. Parts 1 and 2 follow from basic convergence properties
of series. For 3, let x ∈ (c0 − rmin, c0 + rmin),

Sn =
n∑

k=0
conv (k,a,b) (x − c0)

k , and (7)

Rn =
∞∑

k=n+1
bk (x − c0)

k . (8)

By using (6) and (3), Sn can be re-written as

Sn = д(x)
n∑

k=0
ak (x − c0)

k −

n∑
k=0

ak (x − c0)
k Rn−k . (9)

By using equation (6) the first term in this expression con-
verges

lim
n→∞

д(x)
n∑

k=0
ak (x − c0)

k = д(x)f (x).

It remains to show that

lim
n→∞

n∑
k=0

ak (x − c0)
k Rn−k = 0.

Let ϵ > 0, Choose N0 ∈ N such that for all N ≥ N0, |RN | <

ϵ/(2A), where A =
∑∞

k=0

���ak (x − c)k
��� is finite from Lemma

3.1. This N0 exists since limn→∞ Rn = 0.
Choose N1 ∈ N such that for N ≥ N1,

��aN (x − c0)
N �� <

ϵ/(2N0R), where R = maxi ∈R≤N0
|Ri |. This exists since an(x−

c0)
n → 0.
Now, let N ≥ N0 + N1. Using the triangle inequality����� N∑

k=0
ak (x − c0)

k RN−k

�����
≤

�����N−N0∑
k=0

ak (x − c0)
k RN−k

����� +
����� N∑
k=N−N0+1

ak (x − c0)
k RN−k

����� .
The first summation has the bound�����N−N0∑

k=0
ak (x − c0)

k RN−k

����� ≤ N−N0∑
k=0

���ak (x − c0)
k
��� |RN−k |

≤
ϵ

2A

N−N0∑
k=0

���ak (x − c0)
k
���

≤
ϵ

2
.

Formal Verification of Semi-algebraic Sets and Real Analytic Functions CPP ’21, January 18–19, 2021, Virtual, Denmark

The second summation has the bound����� N∑
k=N−N0+1

ak (x − c0)
k RN−k

����� ≤ N∑
k=N−N0+1

���ak (x − c0)
k
��� |RN−k |

≤

N∑
k=N−N0+1

ϵ |RN−k |

2N1R

≤

N∑
k=N−N0+1

ϵ

2N0

=
ϵN0

2N0
≤
ϵ

2
.

(10)
Therefore ����� N∑

k=0
ak (x − c0)

k RN−k

����� ≤ ϵ,

and thus

lim
n→∞

n∑
k=0

ak (x − c0)
k Rn−k = 0.

The result is shown. □

This proof above has the same general structure as the
proof in [16] (Ch. 1, page 4-5). The largest departure is the
introduction of N2 ∈ N, which guarantees the bound shown
in (10) for N ≥ N0+N1. In the original proof, the summation
in (10) is said to converge to 0 “by holding N0 fixed as letting
N go to infinity." This combination of an ϵ based argument
and a limit based argument is not easily translated into PVS,
so a clearer ϵ argument was constructed.

Additionally, the implementation of the proof of Theorem
3.2 in PVS required non-trivial manipulations of finite sums.
A finite sum in PVS is defined using the sigma function
defined in the real number library of NASALib,
sigma(low, high, F): RECURSIVE real =

IF low > high THEN 0
ELSE F(high) + sigma(low, high-1, F) ENDIF
MEASURE (LAMBDA low, high, F:

abs(high+1-low)).

Getting from the definition of Sn in (7) to the form in (9)
required a number of intermediate lemmas, including
sig_a_pull_conv: LEMMA

FORALL (c0:real, a, b:sequence[real],
x:real, n:nat, i:below(j+1)):
sigma(i, n, LAMBDA (k: nat):
sigma(i, k, convlf(k, a, b)) * (x- c0)^k)

=
sigma(i, n, LAMBDA(k:nat): a(k)*
sigma(i,n, LAMBDA(m:nat):
IF k<=m THEN b(m-k)*(x-c0)^m
ELSE 0 ENDIF)),

The Lemma sig_a_pull_conv required inducting on the
quantity n-i in PVS, and allowed writing Sn as

Sn =
n∑

k=0
ak

n∑
m=k

bm−k (x − c0)
m ,

one of the intermediate steps between (7) and (9). These
manipulations are done almost automatically by a mathe-
matician at a blackboard, but can be difficult when doing a
formal proof. From Theorem 3.2 the following useful lemma
can be shown, which says an real analytic function raised to
a power and multiplied by a scalar is still real analytic.

Lemma 3.3. For a function f : D → R that is real analytic
at a point c0 with radius of convergence r ∈ R+. For k ∈ N and
c ∈ R the function

д(x) = c f (x)k

is real analytic at c0 with radius of convergence r ∈ R+.

This section focused primarily on real analytic functions
whose codomain is R. This definition can be extended to a
function f , with codomain in Rn , for n ∈ N in the following
way. f is real analytic at a point c0 means that each of its
sub-functions { fi }ni=1 are real analytic at c0, where

f (x) =


f1(x)
...

fn(x).

 . (11)

The radius of convergence of f (x) is the minimal of all the
radii of convergence of the fi functions. In PVS this definition
uses the nth function:
analytic?(n:nat,c0:real)

(f:[real -> VectorN(n)]): bool =
FORALL(i:below(n)): analytic?(c0)(nth(f,i)).

3.1 Real Analytic vs. Smooth
As will be shown in Section 3.2, the way a real analytic
function behaves at and around the boundary of an SA set is
more restricted that the way a smooth functionmight behave.
To describe this difference, first this section establishes the
difference between the two classes of functions. A function
f is smooth at a a point c0 means that f (n)(c0) exists for all
n ∈ N. The following theorem establishes that every real
analytic function is smooth.

Theorem 3.4. Suppose f : D → R is real analytic at a point
c0 ∈ D with radius of convergence r , given in (5). Then f is
smooth on the interval (c0 − r , c0 + r). Furthermore:

ak =
f (k)(c0)

k!
and

f (n)(x) =
∞∑
k=0

n−1∏
i=0

(k + n − i)akx
k .

CPP ’21, January 18–19, 2021, Virtual, Denmark J. Tanner Slagel, Lauren White, and Aaron Dutle

This theorem was already established in the series library
in NASALib so it is stated without proof.
From Theorem 3.4 it can be shown that the power series

representation of an real analytic function is unique:

f (x) =
∞∑
k=0

f (n) (c0) (x − c0)
k ∀x ∈ (c0 − r , c0 + r) .

(12)

Although an real analytic function is smooth, the converse
is not necessarily true. Take

sm(x) =

{
e−1/x sin(1/x) x > 0
0 x ≤ 0.

(13)

This function is clearly smooth for x , 0. Showing that
sm(x) is smooth at x = 0, but not real analytic3 requires a
few helpful lemmas.

Lemma 3.5. For x > 0, n ∈ N, and sm(x) defined in (13)
1. There are sequences of polynomials {pn} and {qn} such

that the nth derivative of sm at x is given by

sm(n)(x) =
e−1/x (pn(x) sin(1/x) + qn(x) cos(1/x))

x2n
. (14)

2. The limit of sm(n)(x) towards 0 from the right hand side
is zero, i.e.,

lim
x→0+

sm(n)(x) = 0. (15)

The proof of (14) in Lemma 3.5 in PVS uses induction
on n. The polynomial sequences {pn} and {qn} are defined
recursively with p0(x) = 1 and q0(x) = 0, and for n ∈ N≥1

pn(x) = pn−1(x) + p
′
n−1(x) + qn−1(x) − 2nxpn(x) and

qn(x) = qn−1(x) − pn−1(x) + q
′
n−1(x) − 2nxqn−1(x)

where p ′n−1(x) and q
′
n−1(x) are the derivatives of pn−1(x) and

qn−1(x), respectively. This required a proof that a single vari-
ate polynomial is differentiable in PVS, which was straight-
forward using the differentiation rules already present in
the analysis library of NASALib. In fact, once {pn} and {qn}
were defined in PVS, the inductive proof showing (14) made
repeated use of the chain, quotient, product, and power rules
already available in the analysis library.

The proof of (15) in Lemma 3.5 first required showing that
there exists a Cn ∈ R such that, for 0 ≤ x ≤ 1

|sm(n)(x)| ≤ Cn

����e−1/xx2n

���� . (16)

This result follows from the continuity ofh(x) = pn(x) sin(1/x)+
qn(x) cos(1/x) on the interval [0, 1]. Using (16) and

lim
x→0+

e−1/x

x2n
= lim

x→∞

x2n

ex

= 0

3There are other, simpler, smooth but not real analytic functions, but this
choice will serve in the next section.

gives the desired result. Typically, one would use induction
and L’Hôpital’s rule to show

lim
x→∞

x2n

ex
= 0. (17)

NASALib does not have L’Hôpital’s rule, so a different proof
of (17) had to be found that uses properties of the natural
log, exponential function, and existing analysis rules. The
proof is described as follows. For all x ≥ 0, note that

x2n

ex
=

1
ex−2n ln(x).

The function h1(x) = x − 2n ln(x) is less than or equal to
h2(x) =

1
2 (x−4n)+(4n−2n ln(4n)) for all x ≥ 4n. This can be

seen since h1(4n) = h2(4n) and h′
1(x) ≤ h′

2(x) for all x ≥ 4n.
Therefore for x ≥ 4n

0 ≤

���e−h1(x)��� ≤ ���e−h2(x)��� .
Since limx→∞ e−h2(x) = 0, limx→∞ e−h1(x) = 0, and the

result is shown.
Lemma 3.5 part 1 establishes the value of sm(n)(x) for

x > 0. For x < 0, sm(n)(x) = 0. Also sm(n)(x) is continuous
for x , 0, and Lemma 3.5 part 2 establishes that sm(n)(x) is
continuous at x = 0. The next theorem establishes that the
nth derivative of of sm at x = 0 is sm(n)(x) = 0, showing
smoothness at x = 0.

Theorem 3.6. For function sm defined in (13), the following
statement holds

1. sm is smooth, with sm(n)(0) = 0 for each n ∈ N,
2. sm is not real analytic at x = 0.

The proof of Theorem 3.6 part 1 was done by induction.
The crux of the argument was the following equalities

sm(n) (0) = lim
h→0

sm(n−1) (h) − sm(n−1)(0)
h

= lim
h→0

sm(n) (c(h))
= lim

h→0
sm(n) (h)) .

= 0,

Where the existence of ch ∈ (0,h) is given by the Mean Value
Theorem. The conditions of the Mean Value Theorem are
satisfied since sm(n−1) is differentiable on the open interval
(0,h) and continuous, on the interval [0,h].
The Mean Value Theorem in NASALib’s analysis library

required that sm(n) be differentiable on the closed interval
[0,h], which could not be assumed in the proof of Theorem
3.6, since it is exactly what is trying to be proven. This re-
quired the Mean Value Theorem to be specified with the
slightly weaker assumptions on the function:
mean_value_gen: THEOREM

FORALL(f:[real->real], a:real,
b:bb:real|bb>a):

Formal Verification of Semi-algebraic Sets and Real Analytic Functions CPP ’21, January 18–19, 2021, Virtual, Denmark

(derivable?[open_interval(a,b)](f) AND
continuous?[closed_interval(a,b)](f)) IMPLIES
EXISTS (c:real): a < c AND c < b AND
deriv(f, c) * (b - a) = f(b) - f(a).

As a result, this corrected version of theMean Value Theorem
was proven and has been added to NASALib.

The proof of part 2 of Theorem 3.6 was a proof by con-
tradiction. If sm was real analytic at 0, by Theorem 3.4 then
there would be some r ∈ R≥0 such that

f (x) =
∞∑
k=1

f (k)(0)
k!

xk , ∀x ∈ (−r , r) .

Using part 1 of this theorem this would mean f (x) = 0
on the interval (−r , r). This is a contradiction since f (x) =
e−1/x sin(1/x), for all x > 0, and is therefore not the zero
function in any neighborhood around x = 0. This is a fact
that a mathematician would accept without proof, but PVS
required the following reasoning. For n ∈ N and

xn =
2

π (4n + 1)
,

sm(xn) = e
π (4n+1)

2 sin
(
π (4n+1)

2

)
= e

π (4n+1)
2 > 0. for alln ∈ N.

Since
lim
n→∞

xn = 0,

sm is not zero on any open interval around x = 0.
Below is the PVS definition of sm, and the PVS theorem

stating that it is smooth everywhere, but not real analytic at
0.
sm(x:real): real = IF x <= 0 THEN 0
ELSE exp(- 1 / x) * sin(1/x) ENDIF

smooth_not_analytic: THEOREM
smooth?(sm) AND NOT analytic?(0)(sm).

3.2 Semi-algebraic Sets and Real Analytic Functions
This section investigates the way real analytic functions
behave at and around the boundary of SA sets. The goal is to
show that a real analytic function leaves (or enters) an SA set
at a single point, or for a complete interval. More precisely, if
a real analytic function f has a point f (x0) on the boundary
of an SA set, then there is a non-zero ϵ so that the image of
(x0,x0 + ϵ) under f is entirely inside the SA set, or entirely
outside of it (along with analogous result for the image of
(x0 − ϵ,x0)). These results are found in Theorems 3.10 and
3.11.

First, the following lemma discusses the behavior of a real
analytic function: if the real analytic function is positive at a
point, it remains positive in some neighborhood around the
point, if the real analytic function is negative at a point, it
remains negative in some neighborhood around the point,
and if the real analytic function is zero at a point, it is either
uniformly zero in a neighborhood around that point, or non-
zero at all points in a neighborhood around the point.

Lemma 3.7. For an real analytic function f at a point t with
radius of convergence r , the following properties hold:

1. If f (t) > 0 then there exists an ϵ ∈ R>0 such that
f (x) > 0 for all x ∈ (t − ϵ, t + ϵ)

2. If f (t) < 0 then there exists an ϵ ∈ R>0 such that
f (x) < 0 for all x ∈ (t − ϵ, t + ϵ)

3. If f (t) = 0 then there exists an ϵ ∈ R>0 such that either
a. f (x) = 0 for all x ∈ (t − ϵ, t + ϵ), or
b. f (x) , 0 for x , t and x ∈ (t − ϵ, t + ϵ).

Proof. Parts 1 and 2 follow from the fact that f is continu-
ous. For part 3 the proof is by contradiction. Assume that
f (t) = 0 and f is not all zero on any open interval around
t . Also assume that there is a sequence {tk }

∞
k=1 such that

tk ∈
(
t − 1

k , t +
1
k

)
, f (tk) = 0 and tk , t . Since f is real

analytic it takes the form in (5). Since f is non-zero on
(c0 − t , c0 + t) there must be an n ∈ N such that f (n)(t) , 0.
Assume that n is the minimal number that has this property.
By Taylor’s remainder theorem there exists aψk between t
and tk , i.e., |ψk − t | ≤ |tk − t | such that

f (tk) =
n−1∑
i=1

f (i) (t) (x − α)i + f (n)(ψk)(t − tk)

= f (n)(ψk)(t − tk).

This implies f (n) (ψk) = 0 since tk , t . Furthermoreψk → t
since tk → t . Since f is real analytic, f (n)(t) is continuous
this means f (n)(t) = 0, which contradicts that n is the mini-
mal number such that f (n)(t) , 0. The result is shown. □

Parts 1 and 2 of the proof above required basic proper-
ties of continuity that were found in NASALib’s analysis
library. Part 3 required Taylor’s theorem, which was also in
NASALib’s analysis library.

To study the properties of a real analytic function around
the boundary of an SA set, it is necessary to study the behav-
ior of the real analytic function composed with amultivariate
polynomial. The next lemma shows that the composition of
an real analytic function with a multivariate polynomial is
real analytic.

Lemma 3.8. For a function f : D → Rn , real analytic at a
point c0 ∈ R, the following statements are true

1. For any monomialm : Rn → R. the compositionm ◦ f
is real analytic.

2. Furthermore, for any polynomial p : Rn → R, the com-
position p ◦ f is real analytic.

Proof of both parts 1 and 2 of Lemma 3.8 were proved using
induction. For part 1, this was done using the recursion, for
a monomialm : Rn → R and f : R→ Rn ,

m ◦ f (x) = (m̂ ◦ f̂ (x)) · (c(f0(x))
k), (18)

where c is the coefficient of the monomialm, f0 is the first
of the functions that f is comprised of (defined in (11)), and
where m̂ : Rn−1 → R and f̂ : R → Rn−1 are the original

CPP ’21, January 18–19, 2021, Virtual, Denmark J. Tanner Slagel, Lauren White, and Aaron Dutle

monomialm and function f projected on the lastn−1 entries.
In PVS, m̂ and f̂ are defined as
hat(m:mm:monomial| cons?(mm‘alpha)):

{mm:monomial | length(mm‘alpha) =
length(m‘alpha) - 1 } =

(# C: = 1 , alpha : = cdr[nat](m‘alpha) #)

hat(n:posnat)(f:[real -> VectorN(n)]):
[real -> VectorN(n-1)] =
LAMBDA(x:real): cdr(f(x)),

with the property in (18) specified by the lemma
eval_hat_equiv: LEMMA

FORALL(n:posnat, m:monomial |
length(m‘alpha) = n, f:[real->VectorN(n)]):
(LAMBDA(x:real): full_eval(m)(f(x)))
=
(LAMBDA(x:real): m‘C * car(f(x)) ^

car[nat](m‘alpha) *
full_eval(hat(m))(hat(n)(f)(x))).

With the recursion in (18) verified, the rest of the proof of
Lemma (3.8), part 1 follows from applying Theorem 3.2, part
3 and Lemma 3.3.
Part 2 of Lemma (3.8) follows from the fact that that the

polynomial p is the finite sum of n ∈ N monomials
p =m1 +m2 + · · · +mn ,

and the composition p ◦ f (x) is nothing more that the sum
of f composed with monomials

p ◦ f (x) =m1 ◦ f +m2 ◦ f + · · · +mn ◦ f .

By an induction argument that uses Lemma 3.2 part 1, this
proof was shown in PVS.
Lemma 3.8 is very helpful, because it allows reasoning

about p ◦ f directly as an real analytic function, instead of
as the composition of an real analytic function and a multi-
variate polynomial. The next lemma describes the behavior
of an real analytic function around an SA set created by a
conjunction of atomic polynomial formulas, at any point in
the function’s domain.

Lemma 3.9. For a connected D ⊂ R, a function f : D → Rn

that is real analytic on D, and φ be a conjunction of atomic
polynomial formulas {pj }nj=1,

φ =

J∧
j=1

pj ▷ 0 where ▷ ∈ {≥, >, ≤, <}. (19)

For x0 ∈ D there exists an ϵ > 0 such that either
1. for all 0 < t < ϵ , f (x0 + t) ∈ S(φ), or
2. for all 0 < t < ϵ , f (x0 + t) < S(φ).

Because of the result in Lemma 3.8, this can be proven as a
simple extension of Lemma 3.7. For eachpj in the conjunction
(19), there is an ϵj such that there are no roots of pi ◦ f on
(x0,x0+ϵ) for any i ≤ n. From this, it was straightforward to
show that there exists an ϵmin > 0 such that for each i ∈ N≤ J ,

the function pi ◦ f has no root on the interval (x0,x0 + ϵmin),
or pi ◦ f is zero on the entire interval (x0,x0 + ϵmin):
min_eps LEMMA

FORALL (m:meeting,x0:real, n:nat | n >=
atom_max(m), f:(analytic?(atom_max(m),x0))):
EXISTS(eps_min:posreal):
FORALL(i:below(length(m))):
(FORALL(t:real):
(x0 < t AND t < x0 + eps_min) IMPLIES
full_eval(nth(m,i)‘poly)(f(t)) /= 0)
OR
(FORALL(t:real):
(x0 < t AND t < x0 + eps_min) IMPLIES
full_eval(nth(m,i)‘poly)(f(t)) = 0).

With the existence of this ϵmin, it is clear that the truth
value of φ in (19) is constant on the interval (x0,x0 + ϵmin),
finishing the proof.
With Lemma 3.9 above, the main result of the paper is

ready to be shown. The next two theorems classify how an
real analytic function can leave or enter an SA set.

Theorem 3.10. For a connected D ⊂ R, a function f : D →

Rn , that is real analytic on D, a SA set S (φ) where φ is defined
in Equation (3), and a x0 ∈ R such that f (x0) ∈ S (φ). Then
one of the following cases is true

1. f (x) ∈ S(φ) for all x ≥ x0,
2. for x∗ = inf{x ∈ D |x > x0, f (x) < S(φ)}, f (x∗) < S(φ),

and there exists an ϵ such that f (x∗ + t) ∈ S(φ) for all
0 < t < ϵ , or

3. for x∗ = inf{x ∈ D |x > x0, f (x) < S(φ)}, there exists
an ϵ such that f (x∗ + t) < S(φ) for all 0 < t < ϵ .

Note that if the first condition is not satisfied,

t∗ = inf{x ∈ D |x > x0, f (x) < S(φ)}

exists. By using Lemma (3.9), an ϵmin can be found such that
for each i ∈ N≤I the conjunction

J∧
j=1

pi j ▷ 0

has a constant truth value on the interval (x∗,x∗ +ϵmin). The
result follows from this. In PVS the theorem is specified as
clean_exit: THEOREM

FORALL(j:joining, x0:real,
f:(analytic?(meet_max(j),x0))):
semi_alg(j)(meet_max(j))(f(x0)) IMPLIES (
% Condition 1
(FORALL(x:real): x >= x0
IMPLIES semi_alg(j)(meet_max(j))(f(x)) OR
% Condition 2
EXISTS(eps:posreal):
FORALL(t:real): inf({xx:real |
NOT semi_alg(j)(meet_max(j))(f(xx))}) < t
AND t < inf({xx:real |

Formal Verification of Semi-algebraic Sets and Real Analytic Functions CPP ’21, January 18–19, 2021, Virtual, Denmark

Figure 2. A visualization of Example 3.12. The function sm
defined in Equation (13) is smooth, not real analytic, and has
infinitely many points inside and outside of the SA set S(φ)
around x = 0, violating the conclusion of Theorem 3.10.

NOT semi_alg(j)(meet_max(j))(f(xx))}) + t
IMPLIES semi_alg(j)(meet_max(j))(f(t)) OR
% Condition 3
EXISTS(eps:posreal): FORALL(t:real):
inf({xx:real |
NOT semi_alg(j)(meet_max(j))(f(xx))}) < t AND
t > inf({xx:real |
NOT semi_alg(j)(meet_max(j))(f(xx))}) + t
IMPLIES NOT semi_alg(j)(meet_max(j))(f(t))).

Theorem 3.11. For a connected D ⊂ R, a function f : D →

Rn , where that is real analytic on D, a SA set S (φ) where φ is
defined in Equation (3), and a x0 ∈ R such that f (x0) < S (φ).
Then one of the following cases is true

1. f (x) < S(φ) for all x ≥ x0,
2. for x∗ = inf{x ∈ D |x > x0, f (x) ∈ S(φ)} f (x∗) ∈ S(φ)

and there exists an ϵ such that f (x∗ + t) < S(φ) for all
0 < t < ϵ , or

3. for x∗ = inf{x ∈ D |x > x0, f (x) ∈ S(φ)} there exists
an ϵ such that f (x∗ + t) ∈ S for all 0 < t < ϵ .

A proof of Theorem 3.11 can be found by applying Theo-
rem 3.10 with f and the complement of S , i.e. S(φ)c = S(¬φ).
These theorems show that an real analytic function leaves or
enters an SA set in a “clean" way, i.e., at a a single point, or
for a complete interval of time. When the assumption that f
is weakened from real analytic to smooth, this result does
not hold, as shown in the following example.

Example 3.12. Consider the SA set S(φ)whereφ = (X1 ≤ 0),
and the function sm : R → R is defined in Equation (13),
see Figure 2. Using Theorem 3.6, sm is smooth, but not
real analytic. For all x ≤ 0, sm(x) ∈ S(φ). Furthermore,

x∗ = inf{x ∈ R|sm(x) < S(φ)} = 0 since for xn = 1
π (n+1) ,

sm(xn) = 0 ∈ S and xn → 0. On the other hand, for
yn =

2
π (4n+1) , sm(yn) = e−1/yn < S . Because of the infinite os-

cillations around the origin, the conclusions in Theorem 3.10
are not satisfied, i.e., for all ϵ > 0 there exists 0 < x1,x2 < ϵ
such that x1 ∈ S(φ) and x2 < S(φ). In PVS, this counter
example is shown in the lemma below

% Define variables
p1:(mv_standard_form?) =
(: (# C: = 1, alpha: = (: 1 :) #) :)

atom1: atomic_poly =
(# poly : = p1, ineq: = <= #)

SA: set[VectorN(1)] =
semi_alg((: (: atom1 :) :))(2)

% Smoothness is not enough for "clean break"
not_clean_break: LEMMA

inf({xx:real | NOT SA((: sm(xx) :))}) = 0 AND
EXISTS(xn,yn:sequence[real]):
convergence(xn,0) AND convergence(yn,0) AND
FORALL(i:nat): SA((: sm(xn(i)) :)) AND
xn(i) > 0 AND
NOT SA((: sm(yn(i)) :)) AND
yn(i) > 0

4 Related Work
The development of real analytic functions and SA sets in
PVS is a part of an ongoing project to implement a differential
dynamic logic (DDL) in PVS. The purpose of this formaliza-
tion is to help reason about hybrid systems, i.e., systems that
have both discrete variables and continuous variables, the
latter defined by solutions to ordinary differential equations,
without having to explicitly solve the differential equations
in some cases [28–30]. An example of an implementation
of DDL is a theorem prover called KeYmaera X, which is a
formal verification tool to interactively and formally reason
about hybrid systems [10]. To verify the soundness of DDL,
it has been formalized in both Isabelle and Coq [3].

Often, solving the differential equation explicitly is overly
cumbersome or not feasible, so it is easier to reason about the
solutionwithout finding it. The deduction that the solution of
an ODE is real analytic is possible with general assumptions
about the underlying ODEs. DDL allows this reasoning but
requires knowledge of how such a function behaves with
constraints modeled as SA sets. There has been significant
research done on reasoning about differential invariants in
DDL, where the domain of the differential equation and a set
of system constraints are modeled as SA sets. Of particular
interest is how such a solution leaves and enters a set of
constraints, motivating this work. [12, 31–33]
Although the behavior of real analytic functions in and

around the boundary of SA sets have been studied (e.g., [19]),
to the best of the author’s knowledge, there is no known for-
malization of these behaviors. A constructive formalization

CPP ’21, January 18–19, 2021, Virtual, Denmark J. Tanner Slagel, Lauren White, and Aaron Dutle

of SA sets was undertaken in Coq, to specify and formally
verify the cylindrical algebraic decomposition (CAD) algo-
rithm, which takes a set of polynomials and decomposes
their domain space into SA sets, where the sign of each
polynomial is constant [7, 8]. This is one of the most funda-
mental and important algorithms in real algebraic geometry.
In addition to the CAD implementation [20, 21], multivariate
polynomials have been implemented and used in Coq several
ways [1, 4, 6]. In Isabelle/HOL, formalization of multivariate
polynomials [13] and the CAD algorithm [17] are active ar-
eas of research. Implementation of univariate polynomials
was done in the formalization of Sturm’s theorem in Hol
Light [14] and in the PVS implementation of Sturm’s and
Tarski’s theorems [23]. Multivariate Bernstein polynomials
have also been formalized in PVS [22], which is a powerful
tool for approximating continuous functions.

5 Conclusions and Future Work
This paper describes the formalization of multivariate poly-
nomials with a sparse representation and SA sets in PVS, as
well as real analytic functions and their behavior with SA
sets.

The primary goal of this work is to eventually formalize a
version of DDL that can be used in an interactive way in PVS.
To this end, there is much interesting work to be done. The
theory of differential equations must be formalized including,
at the least, the existence and uniqueness theorems which
guarantee a real analytic solution to a differential equation
exists. The soundness of the differential rules in DDL will
also need to be shown, which will depend on the theory of
differential equations.

With respect to the SA set formalization there are several
directions in which the research can be extended. The cur-
rent embedding in PVS assumes the an SA set is already in
disjunctive normal form. An extension that allows condi-
tional statements of polynomial formulas would add to the
expressiveness of the library, and an implementation of a
disjunctive normal form transformation would make this
extension fit into the theory that has been established in
this paper. Also, the current embedding of SA sets in PVS
use Multivariate polynomials with real coefficients, but a
specification that allowed the coefficients of Multivariate
polynomials to be from any ring (such as the integers mod-
ulo n, or rational numbers) would allow a wider range of
mathematical results to be formalized. Additionally, one of
the fundamental theorems in real algebraic geometry is the
Tarski-Seidenberg Theorem, which says that every quantified
formula over multivariate polynomial constraints is equiva-
lent to a quantifier-free formula used to define semi-algebraic
sets. A proof of this theorem, as well as specification and
proof of CAD methods for quantifier elimination, are long-
term goals for the PVS formalization. As noted in Section 4,
this is an ongoing area of research in many theorem provers.

References
[1] Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub.

2016. Formal proofs of transcendence for e and pi as an application
of multivariate and symmetric polynomials. In Proceedings of the 5th
ACM SIGPLAN Conference on Certified Programs and Proofs. 76–87.
https://doi.org/10.1145/2854065.2854072

[2] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. 2013. Real
algebraic geometry. Vol. 36. Springer Science & Business Media. https:
//doi.org/10.1007/978-3-662-03718-8

[3] Brandon Bohrer, Vincent Rahli, Ivana Vukotic, Marcus Völp, and André
Platzer. 2017. Formally verified differential dynamic logic. In Proceed-
ings of the 6th ACM SIGPLAN Conference on Certified Programs and
Proofs. 208–221. https://doi.org/10.1145/3018610.3018616

[4] Cyril Cohen. 2013. Pragmatic quotient types in Coq. In International
Conference on Interactive Theorem Proving. Springer, 213–228. https:
//doi.org/10.1007/978-3-642-39634-2_17

[5] Brian A Davey and Hilary A Priestley. 2002. Introduction to lattices
and order. Cambridge university press. https://doi.org/10.1017/
CBO9780511809088

[6] Maxime Dénès, Anders Mörtberg, and Vincent Siles. 2012. A
refinement-based approach to computational algebra in Coq. In Inter-
national Conference on Interactive Theorem Proving. Springer, 83–98.
https://doi.org/10.1007/978-3-642-32347-8_7

[7] Boris Djalal. 2018. A constructive formalisation of Semi-algebraic sets
and functions. In Proceedings of the 7th ACM SIGPLAN International
Conference on Certified Programs and Proofs. 240–251. https://doi.org/
10.1145/3167099

[8] Boris Djalal. 2018. Formalisations en Coq pour la décision de problèmes
en géométrie algébrique réelle. Ph.D. Dissertation. Côte d’Azur.

[9] Gerald B Folland. 1995. Introduction to partial differential equa-
tions. Vol. 102. Princeton university press. https://doi.org/10.1515/
9780691213033

[10] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and
André Platzer. 2015. KeYmaera X: An axiomatic tactical theorem prover
for hybrid systems. In International Conference on Automated Deduction.
Springer, 527–538. https://doi.org/10.1007/978-3-319-21401-6_36

[11] Khalil Ghorbal, Jean-Baptiste Jeannin, Erik Zawadzki, André Platzer,
Geoffrey J Gordon, and Peter Capell. 2014. Hybrid theorem proving of
aerospace systems: Applications and challenges. Journal of Aerospace
Information Systems 11, 10 (2014), 702–713. https://doi.org/10.2514/1.
I010178

[12] Khalil Ghorbal, Andrew Sogokon, and André Platzer. 2017. A hierarchy
of proof rules for checking positive invariance of algebraic and semi-
algebraic sets. Computer Languages, Systems & Structures 47 (2017),
19–43. https://doi.org/10.1016/j.cl.2015.11.003

[13] Florian Haftmann, Andreas Lochbihler, and Wolfgang Schreiner. 2014.
Towards abstract and executable multivariate polynomials in Isabelle.
In Isabelle Workshop, Vol. 201.

[14] John Harrison. 1997. Verifying the accuracy of polynomial approxima-
tions in HOL. In International Conference on Theorem Proving in Higher
Order Logics. Springer, 137–152. https://doi.org/10.1007/BFb0028391

[15] Hassan K Khalil and Jessy W Grizzle. 2002. Nonlinear systems. Vol. 3.
Prentice hall Upper Saddle River, NJ.

[16] Steven G Krantz and Harold R Parks. 2002. A primer of real analytic
functions. Springer Science & Business Media. https://doi.org/10.1007/
978-0-8176-8134-0

[17] Wenda Li. 2019. Towards justifying computer algebra algorithms in
Isabelle/HOL. Ph.D. Dissertation. University of Cambridge. https:
//doi.org/10.17863/CAM.36637

[18] Jiang Liu, Naijun Zhan, and Hengjun Zhao. 2011. Computing semi-
algebraic invariants for polynomial dynamical systems. In Proceedings
of the ninth ACM international conference on Embedded software. 97–
106. https://doi.org/10.1145/2038642.2038659

https://doi.org/10.1145/2854065.2854072
https://doi.org/10.1007/978-3-662-03718-8
https://doi.org/10.1007/978-3-662-03718-8
https://doi.org/10.1145/3018610.3018616
https://doi.org/10.1007/978-3-642-39634-2_17
https://doi.org/10.1007/978-3-642-39634-2_17
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1007/978-3-642-32347-8_7
https://doi.org/10.1145/3167099
https://doi.org/10.1145/3167099
https://doi.org/10.1515/9780691213033
https://doi.org/10.1515/9780691213033
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.2514/1.I010178
https://doi.org/10.2514/1.I010178
https://doi.org/10.1016/j.cl.2015.11.003
https://doi.org/10.1007/BFb0028391
https://doi.org/10.1007/978-0-8176-8134-0
https://doi.org/10.1007/978-0-8176-8134-0
https://doi.org/10.17863/CAM.36637
https://doi.org/10.17863/CAM.36637
https://doi.org/10.1145/2038642.2038659

Formal Verification of Semi-algebraic Sets and Real Analytic Functions CPP ’21, January 18–19, 2021, Virtual, Denmark

[19] Jiang Liu, Naijun Zhan, and Hengjun Zhao. 2011. Computing semi-
algebraic invariants for polynomial dynamical systems. In Proceedings
of the ninth ACM international conference on Embedded software. 97–
106. https://doi.org/10.1145/2038642.2038659

[20] Assia Mahboubi. 2006. Programming and certifying a CAD algorithm
in the Coq system. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.

[21] Assia Mahboubi. 2007. Implementing the cylindrical algebraic decom-
position within the Coq system. Mathematical Structures in Computer
Science 17, 1 (2007), 99.

[22] César Muñoz and Anthony Narkawicz. 2013. Formalization of Bern-
stein polynomials and applications to global optimization. Journal of
Automated Reasoning 51, 2 (2013), 151–196. https://doi.org/10.1007/
s10817-012-9256-3

[23] Anthony Narkawicz, César Muñoz, and Aaron Dutle. 2015. Formally-
verified decision procedures for univariate polynomial computation
based on Sturm’s and Tarski’s theorems. Journal of Automated Reason-
ing 54, 4 (2015), 285–326. https://doi.org/10.1007/s10817-015-9320-x

[24] SamOwre, JohnM Rushby, and Natarajan Shankar. 1992. PVS: A proto-
type verification system. In International Conference on Automated De-
duction. Springer, 748–752. https://doi.org/10.1007/3-540-55602-8_217

[25] Sam Owre and Natarajan Shankar. 2008. A brief overview of PVS. In
International Conference on Theorem Proving in Higher Order Logics.
Springer, 22–27. https://doi.org/10.1007/978-3-540-71067-7_5

[26] André Platzer. 2008. Differential dynamic logic for hybrid systems.
Journal of Automated Reasoning 41, 2 (2008), 143–189. https://doi.org/
10.1007/s10817-008-9103-8

[27] André Platzer. 2018. Logical foundations of cyber-physical systems.
Vol. 662. Springer. https://doi.org/10.1007/978-3-319-63588-0

[28] André Platzer and Jan-David Quesel. 2008. KeYmaera: A hybrid
theorem prover for hybrid systems (system description). In Interna-
tional Joint Conference on Automated Reasoning. Springer, 171–178.
https://doi.org/10.1007/978-3-540-71070-7_15

[29] André Platzer and Yong Kiam Tan. 2018. Differential equation axiom-
atization: The impressive power of differential ghosts. In Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science.
819–828. https://doi.org/10.1145/3209108.3209147

[30] Jan-David Quesel, Stefan Mitsch, Sarah Loos, Nikos Aréchiga, and
André Platzer. 2016. How to model and prove hybrid systems with
KeYmaera: a tutorial on safety. International Journal on Software Tools
for Technology Transfer 18, 1 (2016), 67–91. https://doi.org/10.1007/
s10009-015-0367-0

[31] Andrew Sogokon, Khalil Ghorbal, Paul B Jackson, and André Platzer.
2016. A method for invariant generation for polynomial continuous
systems. In International Conference on Verification, Model Checking,
and Abstract Interpretation. Springer, 268–288. https://doi.org/10.1007/
978-3-662-49122-5_13

[32] Andrew Sogokon and Paul B Jackson. 2015. Direct formal verification
of liveness properties in continuous and hybrid dynamical systems.
In International Symposium on Formal Methods. Springer, 514–531.
https://doi.org/10.1007/978-3-319-19249-9_32

[33] Andrew Sogokon, Stefan Mitsch, Yong Kiam Tan, Katherine Cordwell,
and André Platzer. 2019. Pegasus: A framework for sound continuous
invariant generation. In International Symposium on Formal Methods.
Springer, 138–157. https://doi.org/10.1007/978-3-030-30942-8_10

[34] Brian L Stevens, Frank L Lewis, and Eric N Johnson. 2015. Aircraft con-
trol and simulation: dynamics, controls design, and autonomous systems.
John Wiley & Sons. https://doi.org/10.1002/9781119174882

[35] Yong Kiam Tan and André Platzer. 2020. An Axiomatic Approach
to Existence and Liveness for Differential Equations. arXiv preprint
arXiv:2004.14561 (2020).

[36] Morris Tenenbaum and Harry Pollard. 1963. Ordinary differential equa-
tions: an elementary textbook for students of mathematics, engineering,
and the sciences. Dover Publications.

[37] Richard Zippel. 1993. Effective Polynomial Computation. Springer US.
https://doi.org/10.1007/978-1-4615-3188-3

https://doi.org/10.1145/2038642.2038659
https://doi.org/10.1007/s10817-012-9256-3
https://doi.org/10.1007/s10817-012-9256-3
https://doi.org/10.1007/s10817-015-9320-x
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-540-71067-7_5
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1145/3209108.3209147
https://doi.org/10.1007/s10009-015-0367-0
https://doi.org/10.1007/s10009-015-0367-0
https://doi.org/10.1007/978-3-662-49122-5_13
https://doi.org/10.1007/978-3-662-49122-5_13
https://doi.org/10.1007/978-3-319-19249-9_32
https://doi.org/10.1007/978-3-030-30942-8_10
https://doi.org/10.1002/9781119174882
https://doi.org/10.1007/978-1-4615-3188-3

	Abstract
	1 Introduction
	2 Polynomials & Semi-algebraic Sets
	2.1 Multivariate Polynomials Over the Reals
	2.2 Semi-algebraic Sets

	3 Real Analytic Functions
	3.1 Real Analytic vs. Smooth
	3.2 Semi-algebraic Sets and Real Analytic Functions

	4 Related Work
	5 Conclusions and Future Work
	References

